High Accuracy and Multiscale Multigrid Computation for Three Dimensional Biharmonic Equations

نویسنده

  • Hoda Ibrahim
چکیده

The multiscale multigrid method is presented in this article to solve the linear systems arising from a fourth order discretisation. We used a symbolic algebra packageMathematica to derive a family of finite difference approximations on a 27 point compact stencil. The unknown solution and its second derivatives are carried as unknowns at selected grid points. A set of test problems are presented to demonstrate the efficiency and accuracy of the fourth order compact scheme. Key–Words: Boundary value problems; three-dimensional biharmonic equation; fourth order compact scheme; multiscale multigrid method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Accuracy and Scalable Multiscale Multigrid Computation for 3D Convection Diffusion Equation

We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined w...

متن کامل

Integrated Fast and High Accuracy Computation of Convection Diffusion Equations Using Multiscale Multigrid Method

We present an explicit sixth order compact finite difference scheme for fast high accuracy numerical solutions of the two dimensional convection diffusion equation with variable coefficients. The sixth order scheme is based on the well-known fourth order compact scheme, the Richardson extrapolation technique, and an operator interpolation scheme. For a particular implementation, we use multisca...

متن کامل

Multigrid Preconditioning for the Biharmonic Dirichlet Problem

A multigrid preconditioning scheme for solving the Ciarlet-Raviart mixed method equations for the biharmonic Dirichlet problem is presented. In particular, a Schur complement formulation for these equations which yields non-inherited quadratic forms is considered. The preconditioning scheme is compared with a standard W-cycle multigrid iteration. It is proved that a Variable V-cycle preconditio...

متن کامل

High accuracy multigrid solution of the 3D convection-diffusion equation

We present an explicit fourth-order compact nite diierence scheme for approximating the three dimensional convection-diiusion equation with variable coeecients. This 19-point formula is deened on a uniform cubic grid. Fourier smoothing analysis is performed to show that the smoothing factor of certain relaxation techniques used with the scheme is smaller than 1. We design a parallelization-orie...

متن کامل

A Multigrid-Fourier Method for the Computation of Elastic Fields with Application to Heteroepitaxy

A multigrid-Fourier method is formulated for the computation of elastic fields with applications to heteroepitaxy. A discrete ball and spring model with an underlying cubic structure is considered, where the natural lattice spacing of the atoms comprising the deposited film is different than those of the substrate. This system is linearized resulting in a large linear system for the displacemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012